Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 86: 102-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26196305

RESUMO

Cardiomyocyte (CM) hypertrophy and increased heart mass in response to pressure overload are associated with hyper-activation of the myocyte enhancer factor-2 (MEF2) family of transcriptional regulators, and concomitant initiation of the fetal gene program. Adiponectin, an adipokine that is reduced in individuals with obesity and diabetes, has been characterized both as a negative regulator or permissive factor in cardiac hypertrophy. We therefore sought to analyze temporal regulation of MEF2 activity in response to pressure overload (PO) and changes in adiponectin status. To address this we crossed a well characterized transgenic MEF2 "sensor" mouse (MEF2-lacZ) with adiponectin null mice (Ad-KO) to create compound MEF2 lacZ/Ad-KO mice. Initially, we established that transverse aortic banding induced PO in wild-type (WT) mice increased heart mass and CM hypertrophy from 1 to 4weeks following surgery, indicated by increased CM diameter and heart weight/tibia length ratio. This was associated with cardiac dysfunction determined by echocardiography. Hypertrophic changes and dysfunction were observed in Ad-KO mice 4weeks following surgery. MEF2 lacZ activity and endogenous ANF mRNA levels, used as indicators of hypertrophic gene activation, were both robustly increased in WT mice after MTAB but attenuated in the Ad-KO background. Furthermore, activation of the pro-hypertrophic molecule p38 was increased following MTAB surgery in WT mice, but not in Ad-KO animals, and treatment of primary isolated CM with recombinant adiponectin induced p38 phosphorylation in a time dependent manner. Adiponectin also increased MEF2 activation in primary cardiomyocytes, an effect attenuated by p38 MAPK inhibition. In conclusion, our data indicate that robust hypertrophic MEF2 activation in the heart in vivo requires a background of adiponectin signaling and that adiponectin signaling in primary isolated CM directly enhances MEF2 activity through activation of p38 MAPK. We conclude that adiponectin is required for full induction of cardiomyocyte MEF2 activation, thus contributing to the myocardial hypertrophic gene expression program in response to PO.


Assuntos
Adiponectina/genética , Cardiomegalia/genética , Fatores de Transcrição MEF2/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Adiponectina/metabolismo , Animais , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pressão , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...